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ABSTRACT: The importance of the flexibility of resources increased rapidly with the turbulent changes in the 

industrial context, to meet the customers’ requirements. Among all resources, the most important and considered as the 

hardest to manage are human resources, in reasons of availability and/or conventions. In this article, we present an 

approach to solve project scheduling with multi-period human resources allocation taking into account two flexibility 

levers. The first is the annual hours and working time regulation, and the second is the actors’ multi-skills. The 

productivity of each operator was considered as dynamic, developing or degrading depending on the prior allocation 

decisions. The solving approach mainly uses decision-based genetic algorithms, in which, chromosomes don’t represent 

directly the problem solution; they simply present three decisions: tasks’ priorities for execution, actors’ priorities for 

carrying out these tasks, and finally the priority of working time strategy that can be considered during the specified 

working period. Also the principle of critical skill was taken into account. Based on these decisions and during a serial 

scheduling generating scheme, one can in a sequential manner introduce the project scheduling and the corresponding 

workforce allocations. 

 

KEYWORDS: human resources allocation, dynamic experience, annual-hours, versatility, project planning and 

scheduling, genetic algorithms. 

 

1 INTRODUCTION 

Companies are constantly searching for shorter response 

times, and this concern is all the more acute as competi-

tion between them is harder. Thus, they try to develop 

reactivity towards changing environments. While flexi-

bility is always examined with respect to alternatives, it 

can be characterised by a rapid and significant change 

from one alternative to another, in function of short and 

long terms strategies (Mitchell, 1995). Therefore, firms 

are searching for agility and flexibility. Human resources 

management is a key area, thanks to which firms can 

create this flexibility: organizations should develop 

multi-skilled, adaptable, and highly responsive work-

force that can deal with the non-routine circumstances 

(Youndt et al. 1996). A vast of academic research has 

focused towards workforce flexibility applications, for 

example, the proposition of Vidal et al. (1999) to bal-

ance the fluctuation in workstation loads with respect to 

the available workforce, by using flexibility levers such 

as multi-skilled workforce, working time modulation, or 

even external actors; or the model proposed by Franchini 

et al. (2001) for the human resources planning and as-

signment, based on skills’ inventory. Later, the problem 

was introduced as a multi-skill project scheduling prob-

lem by Bellenguez-Morineau and Néron (2007), which 

optimizes the project duration in presence of precedence 

and resources constraints. In such a problem, each task 

requires a number of skills for its realization, each skill 

can be carried out by one or more resource(s) at a time, 

and in addition each actor may master one or more 

skill(s). Duquenne et al. (2005) introduced an industrial 

application methodology for workforce allocation, based 

on their versatility, with task durations influenced by the 

actors’ efficiencies. After while, Valls et al. (2009) ap-

plied this concept to service centres. When the human 

resources are involved in a problem, they always come 

with their working time regulations. Therefore, (Edi, 

2007; Drezet and Billaut, 2008; Attia et al. 2012) pre-

sented their problems of scheduling multi-skilled actors 

while complying with legislation constraints. On the 

other hand, the annualized working time allows fluctuat-

ing time-tables in order to face seasonal variations. Many 

researches have been conducted on workforce schedul-

ing with this new flexibility lever (for example, Hung, 

1999; Grabot and Letouzey, 2000; Azmat, 2004; 

Corominas et al. 2007; Hertz et al. 2010).  

 

The model in Attia et al. (2012) presents the workforce 

planning and scheduling problem, with the two levers of 

flexibility at a time. In this model, tasks processing re-
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quires the fulfilment of some skills’ workloads. All the 

jobs, for any skill in a task, should be started at the same 

time, but there is flexibility for finishing them within a 

time window limited by a minimum and a maximum 

value imposed by the task definition. The tasks’ dura-

tions weren’t predetermined, provided they respect these 

time windows. On the other side, each operator in the 

company masters a list of skills with different productiv-

ity levels. In order to estimate these levels of productiv-

ities, Attia et al. (2011a) integrated the development of 

experience as a result of practice, known as “learning-

by-doing”, and the skills’ erosion in case of interruption; 

the actual duration needed to perform a given workload 

depends on the efficiencies of the actors assigned. So the 

duration and amount of work for each job are considered 

as decision variables, and must be optimized when allo-

cating the workforce. Moreover, the working time modu-

lation permits the employees’ time-tables to change 

weekly or even daily, depending on the variations of the 

workload, provided they enforce labour legislation. So in 

the model they produced, the number of working hours 

per day for an actor is not defined in advance, since it 

results from previous allocation decisions, and from the 

resulting skills’ durations. With such a non-linear model, 

one will encounter a huge optimization problem, with 

both binary variables for the actors’ allocation decisions, 

and integer variables representing the required work-

loads’ durations and their start dates, in addition to the 

real dependant variables that represent the operators’ 

productivities, and their daily work. 

 

As well known, evolutionary algorithms were success-

fully applied to industrial optimization problems (Gen 

and Cheng, 2000). In the present article, we describe a 

genetic algorithm (GA) with a serial allocation scheme 

to solve this project scheduling problem, with multi-

period workforce allocation, taking into account the 

temporal and versatility flexibilities, in addition to the 

evolution of experience during the project horizon.  

 

We organized our article as follows: in section 2, we 

present the model’s mathematical formulation. Sections 

3 and 4 introduce an approach to bring a solution: in 

section 3, the GA will be presented, and in section 4, the 

scheduling procedure based on the chromosomes will be 

discussed. We present in section 5 the model validation, 

and in section 6, a design of experiment intended at tun-

ing the model parameters. Finally, the conclusions and 

directions for further research are presented in Section 7. 

2 PROBLEM REPRESENTATION  

The problem can be presented as follows: A project con-

sists of a set I of unique and original tasks. We only con-

sider one project at a time. The execution of each task i 

I requires a given set of competences taken within a 

group K of all the competences present in the company. 

In the other side, our resources are a set A of human re-

sources, each individual or actor “a” being able to per-

form one or more competence(s) “nka” from the set K, 

with a time-dependent performance – we consider the 

actors as multi-skilled. The ability of each actor “a” to 

practice a given competence “k”, is expressed by his 

efficiency θa,k in the range [0,1]; if the actor has an effi-

ciency θa,k = 1, he is considered to have a nominal com-

petence in the skill “k”. So when this actor is allocated 

for this skill on any task, he will perform the job in the 

standard workload’s duration Ωi,k, whereas other actors, 

whose efficiencies are lower than 1 for this skill, will 

require a longer working time. The actual working time 

ωi,k for this competence can be calculated from the effi-

ciency as follows:  ωi,k = Ωi,k / θa,k > Ωi,k, resulting in an 

increase of both execution time and labour cost (we as-

sume that actors’ wages are the same). From this point of 

view, the actual execution duration of a task competence 

di,k is not predetermined: it results from the decisions 

about actors’ allocations. Indeed, in this model θa,k   

[θmin,k, 1], where θmin,k represents the lower limit below 

which an allocation will not be considered as acceptable, 

for economic and/or quality reasons. We also adopted 

dynamic actors’ efficiencies (Attia et al. 2011a): if an 

actor is assigned to perform a given workload with a 

given skill, his efficiency will increase as a result of 

“learning by practice”. On the other hand, if the actor is 

shifted away from practicing this skill, his efficiency will 

decrease during the interruption period, as a result of the 

forgetting effect. Of course, there is a relation between 

the problem variables (the workforce allocation decision 

variable a,i,k,j, di,k, ωa,i,,k,j , θa,k) , but this relation is sel-

dom linear: some competences may require more than 

one actor for its completion, each actor having his own 

efficiency. In addition to the actors’ versatility, we con-

sider that the company adopts a working time modula-

tion strategy: the timetables of its employees may be 

changed according to the workloads to be done. Thus, 

we aim simultaneously at four different targets: ensure a 

balance between the workloads required and the actors’ 

availabilities; respect the processing and regulations con-

straints; maximise the actors’ efficiencies – and mini-

mize the execution cost: this can lead to a huge optimiza-

tion problem. 

 

As a result, the problem consists in minimizing a cost 

function, subject to a set of allocation, scheduling and 

regulation constraints. First, the objective function is the 

sum of five cost terms (f1,…f5), as shown in equation (1). 

The first term (f1) represents the actual working cost of 

workforce without overtime, with standard working 

hourly cost rate “Ua”. The second term (f2) represents the 

cost increase due to overtime, which can be computed by 

applying a multiplier “u” to the standard hourly rate. The 

third term (f3) represents a virtual cost associated to ac-

tors’ loss of flexibility at the end of the project, via a 

virtual cost rate “UFa”: it is a function of the average 

actors’ occupation rates, relative to the standard weekly 

working hours “Cs0”, and it favours the solutions with 

minimum working hours for the same workload: this is 

intended at preserving the future flexibility of the com-

pany. The term (f4) charges a penalty cost to any activity 

that would finish outside its flexible delivery time win-
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dow (Vidal et al. 1999): this cost may result from stor-

age if products are completed too early (useless inven-

tory), or from lateness penalties; it can be calculated with 

the activity actual duration “LV”, compared to a time 

window [L –  , L + ], defined by  the contractual dura-

tion “L” and a tolerance margin . As a result the func-

tion (f4) can be written as equation (1-d). At the end, the 

term (f5) represents the fictive gain of actors’ productiv-

ities developments. It can be calculated as shown by 

equation (1-e) by comparing the actors’ efficiencies be-

fore and after the project accomplishment. 

 

F= f1+ f2+ f3+ f4 - f5 (1) 
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The model constraints:  

- Actors’ allocation constraints: 

 

,1,,,   ankk jkia     aA,  iI,  j (2) 

 

They ensure that any actor “a” should be assigned for 

only one competence k, and only on one task i during the 

working time instance j. The allocation variable a,i,k,j=1 

if the actor a is assigned with skill k on the task i during 

the working time period j; a,i,k,j=0 otherwise.  

 

- Resources availability constraints:  

 

,,, ki jki AER
j

 
      j,  kK  (3) 

 

Constraints (3) insure that, for the set “ρj” of all the tasks 

under process at the date “j”, the need of resources ER to 

perform the workload of the skill “k”, is always lower 

than or equal to the total staff in this skill (Ak). 

 

- Tasks’ temporal relations constraints: 

ddi + 
min

,ciSS  ≤ ddc ≤ ddi + 
max

,ciSS ,  (i ,c) ЄESS  (4) 

ddi + 
min

,ciSF  ≤ dfc ≤ ddi + 
max

,ciSF ,   (i ,c) ЄESF (5) 

dfi + 
min

,ciFS  ≤ ddc ≤dfi + 
max

,ciFS ,   (i ,c) ЄEFS  (6) 

dfi + 
min

,ciFF  ≤ dfc ≤ dfi + 
max

,ciFF ,  (i ,c) ЄEFF  (7) 

 

Constraints (4) to (7) denote the constraints of global 

temporal relations between any (i, c) two tasks’ start 

dates “dd” and their finish dates “df”, with minimum or 

maximum time lag, for their start (S)/finish (F) events.  

 

- Skills’ qualitative satisfaction constraints  

 

θmin,k ≤ a,k(n  ddi,k) a,i,k,j ≤ 1,     aA,  kK,  j (8) 

 

The skills’ satisfaction constraints (8) express that the 

actors cannot be assigned on a given competence without 

having the minimum level of qualification θmin,k. The 

term a,k(n  ddi,k)  is the efficiency of the actor a in prac-

ticing the skill k, at the beginning date of the job (Attia et 

al. 2011b) – inspired from the works of (Wright, 1936): 


a,k(n  ddi,k) = 1/[1+(1/a,k(ini)  1)(n)b]  (9) 

 

fa,k = 1/[1+(1/a,k(ini) - 1)( neq)
b-f( neq +)f]  (10) 

 

f  = – b (b+1)  log (neq)/log (+1)  (11) 

 

Here, neq represents the number of equivalent work repe-

titions; when applied to the worker a in the skill k at the 

date (ddi,k), we call it (neq → ddi,k). A second factor 

a,k(ini) represents the actor’s initial efficiency at the first 

time he undertakes the skill k; the exponent factor (b) 

can be calculated from the actor’s learning rate (ra,k), as 

b=log (ra,k) / log(2). The skills attrition during periods of 

interruption is given by equations (10) and (11) (Attia et 

al. 2011a); according to the works of Wright and to 

those from Jaber and Bonney (1996) this attrition in-

duces four parameters. The first two are the initial effi-

ciency a,k(ini), and the exponent (b). The others are f, 

representing the exponential parameter of the forgetting 

curve, as in equation (11); and (ξ = Tb / Ta) is the ratio 

between a continuous period of practice (Ta) and the 

interruption period (Tb) at the end of which the actor’s 

efficiency has decreased back to its initial value. λ is the 

number of work repetitions that would had been per-

formed if the interruption didn’t occur.  

 

- The skill’s quantitative satisfaction constraints 
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 iI,  kK (12) 

 

The workload satisfaction constraints (12) ensure that 

the total actors’ equivalent working hours for a given 

competence balance the required workload. 

  

- Tasks duration’s constraints: 

 

,DdD ii,ki

maxmin    i, k  (13) 
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Constraints set (13) express that the duration variables 

di,k must be within the limits of the task’s temporal win-

dow; the task execution time di will be calculated as di = 

max(di,k) k=1,……to, K.  

 

- Actors’ working time regulation constraints:  

- For a period of one day: 

 

,
1 1

,,,,,, DMaxJ
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   a, j  (14) 
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The actors’ maximum number of working hours per day 

(constraint 14) is always lower than or equal to a pre-

specified maximum value of DMaxJ. Considering this, 

the real workforce ERi,k, available to fulfil the workload 

Ωi,k within a period di,k should be defined, representing 

an equivalent manpower of EEi,k.  

 

- For a period of one week: 

,
1)1( 1 1
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 aA, sS (15) 

 

ωa,s ≤ DMaxS,aA, sS  (16) 

 

The constraints (15) and (16) express that actors’ work-

ing hours per week “ωa,s” is always lower than or equal 

to the legal weekly working time “DMaxS”.  

 

- For a reference period of twelve successive weeks:  
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pFor

s

sp

pa 

















  (17) 

Equation (17) represents the constraints of actor’s 

maximum average working hours during a reference 

working period of 12 successive weeks “DMax12S”; we 

assumed that the data concerning the actors’ 

involvements on previous activities have been accurately 

recorded and are available at any time (this should be 

included in the data file concerning the company …).  

- For a period of one year:  

,, a

S

Ss

sa DSA
FW

SW

 


aA  (18) 

The constraints set (18) guarantee that for each actor, his 

total working hours for the current activity are always 

lower than his residual yearly working hours, where ωa 

represents the actor’s working time in the current year on 

previous activities, and “DSA” is the maximum annual 

working hours of any actor.  

 

- Overtime constraints  
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   aA,  (20) 

 

Finally the sets (19) and (20) modulate the overtime con-

straints; overtime hours “HS” can be calculated from 

equation (19). Accordingly, each actor always has HSa,s 

 [0, DMaxS – DMaxMod] for each working week “s”, 

where DMaxMod represents the maximum weekly work-

ing time, based on the company internal agreement 

modulation. Constraints (20) represent the overtime limi-

tations for each actor: from this, an actor’s overtime is 

always kept lower than or equal to a pre-specified yearly 

maximum “HAS”. Here we assumed that the actual 

amount of each actor’s overtime hours “HARa” per-

formed on other previous activities is available.  

3 GENETIC ALGORITHMS  

To solve any allocation problem, there are some deci-

sions to be taken, depending on the problem type. These 

decisions may be the choice of the resources appointed 

to handle some tasks within a given period, or the order 

of execution of these tasks. For the coding of the genetic 

material, (Goldberg, 1989) (page 80) warns that “the 

user should select the smallest alphabet that permits a 

natural expression of the problem”. We assert that it is 

possible to present activity scheduling and the corre-

sponding resources allocation by answering to the fol-

lowing four questions: what task will be processed first? 

Then which actor(s) will be selected to complete this 

task? What is the working time strategy that the actors 

will respect, during the activity realization? Then for a 

complete solving of the problem, we need to propose the 

last question: which skill will be prioritized, amongst the 

others, for the workloads execution process in a given 

time interval? In our approach, we introduce a genetic 

algorithm based on randomly generated answers to the 

first three questions (as section 3.1), but the fourth one 

will be answered according to the critical skill principle 

(Edi, 2007): a skill’s criticality is the ratio of its work-

load to be performed in the project, to the total available 

workforce capacity during the project temporal horizon. 

The higher is this ratio for a skill, the more it can be con-

sidered as critical, i.e. scarce: then this skill should be 

realized in priority. In the following section we present 

the genetic algorithm structure and its genotypes.  

 

3.1 Initial population representation 

The proposed GA model is based on an indirect encod-

ing of the problem, mainly for two reasons: First, the 

direct coding of the problem’s variables for constructing 

the individuals’ genotype creates very long strings, 
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which increases the computing time. For example the 

representation of a problem of 30 tasks, 82 actors, and 4 

skills leads to chromosomes having 3,879 genes, 

whereas with the indirect encoding presented further in 

this paper, it drops down to 117 genes. The second rea-

son is the relations between the different problem’s deci-

sion variables, which can lead to the presence of “epista-

sis” (Gibbs et al. 2006): there are interactions between 

some of the chromosome’s genes; some of their alleles 

may affect other genes’ alleles. This phenomenon can be 

illustrated by the equation of an actor’s number of daily 

working hours, ωa,i,k,j = Ωi,k  / (EEi,k  di,k), that states a 

relation between three variables: the equivalent work-

force EEi,k assigned to perform a given workload Ωi,k, the 

duration di,k, and the corresponding actors’ daily working 

hours. From this equation, any variable’s domain must 

be consistent with each others’, in order to satisfy the 

corresponding constraints. So, any change in a gene cor-

responding to actors’ allocation results in modifications 

in actors’ equivalent productivities and in the domain of 

possible durations, based on the working time constraints 

and the actors’ availability: then any further modification 

should be done randomly within this new modified do-

main during GA’s evolution process. With such a meth-

odology, finding a constraints–satisfying solution is 

quite hard and may require larger CPU times. In addi-

tion, crossover and reproduction of new strings based on 

the whole variables’ domains can produce more unfeasi-

ble genomes, so we waste a great amount of running 

time for fixing the resulting distortions. 

 

As mentioned above, our chromosomes will contain 

three parts; the first one presents the priority of realizing 

tasks. Thus, the number of genes in this part equals the 

number of tasks in the project; the locus of the gene in 

this sub-chromosome represents the task identification 

number. But the value of the gene, or its allele (gener-

ated randomly), represents the corresponding task prior-

ity in the project. Based on this part of the chromosome 

we can build a tasks’ priority list, by arranging these 

numbers in a descending order, the position of the task in 

the rearranged list represents its priority. Of course, in 

the scheduling procedure that will be introduced in the 

following section, the temporal relations between tasks 

will be respected. The second sub-chromosome holds the 

actors’ priorities for the allocation process. It is exactly 

as the first part but instead of tasks, the genes represent 

the actors. Thus, each gene’s locus represents the corre-

sponding actor identification number, and holds his pri-

ority indicator value as its allele, for the allocation proc-

ess. Based on this part we can construct the actors’ prior-

ity list for the project execution. Finally, the third part of 

the chromosome represents the decision of what working 

time strategy will be applied to the activity. From the 

working time regulatory constraints, we have five inter-

vals (expressed in daily hours), which can be described 

according to French regulations as follows:  

[X, 7]: Represents the daily working time strategy within 

the standard weekly hours C0s limits, where X can 

represent a social willing of a minimum number of 

working hours per day, under which the daily profit for 

the actor can be considered as non-effective. Considering 

that an employee would not appreciate to be called on 

duty for a too little time, we arbitrarily fixed it at 4 

hours. The second interval, represents the work above 

the standard weekly hours Cs0 limits, and is limited by 

the constraints of the company’s internal modulation of 

weekly working time; we assumed it to be Cs0 = 39 hours 

per week, which gives, in our example, the second 

interval to be ]7, 7.8] hours per day for a 5-day week. 

The next interval will then be limited by the constraints 

of the maximum average weekly working time for a 

period of 12 successive weeks; if we assume it to be 44 

hours a week, according to French regulations, the third 

interval will be ]7.8, 8.8] hours per day. The fourth 

interval will then integrate the maximum number of 

working hours per week; this number is of 48 hours per 

week in France, and in this case we get ] 8.8, 9.6] hours 

per day for our 4th interval. Finally, the last interval 

considers the daily constraint of maximum working time 

– if it is 10 hours per day, the 5th and mast interval will 

be ]9.6, 10] hours per day.  

 

Thus, considering the different working time constraints, 

we get five time intervals for the decision of: what daily 

rate actors will work with? These decisions are repre-

sented by the third sub-chromosome. Each gene position 

in this part, exactly as for the two previous sub-

chromosomes, will represent the daily work range identi-

fication number, and its value represents the priority 

assorted to each range. With the aid of this part we can 

construct the time intervals priority list, which the actors 

will work with respect to for the current simulation of 

the problem. With this method, we are able to randomly 

generate all the initial population individuals. Based on 

this indirect encoding of the problem, we can gain some 

benefits towards the feasibility of the chromosome after 

the reproduction processes, and avoid some correction 

procedures to the individuals, such as fixing the distor-

tions that could result from crossovers or mutations. 

 

3.2 Individuals’ evaluations and fitness calculation 

For each individual, the scheduling algorithm (described 

in section 4) will take place, for decoding the chromo-

some, and designing the project schedule. The corre-

sponding objective function can be calculated as de-

scribed in section 2, equations (1); accordingly, and after 

the normalization of different terms (f’i)s, we can get 

individuals’ evaluations by assigning a given weight 

(interest) to each term f’i. Considering that, in case of 

violation of one or more of the soft constraint(s) (we 

only consider working time constraints 17, 18 and 20 as 

soft constraints), we should distinguish between the un-

feasible and feasible schedules: we will use penalties to 

highlight and weight the unsatisfied constraints, if any. 

For the violation of one of the hard constraints the pen-

alty (PHC) will be much larger compared to those of the 

soft constraints (PSC). The sum of these penalties, ex-
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pressed in monetary units, can be added to the objective 

function, as a function called (f6):  





SC

SC

HC

h

hHC PPf
11

6




  

Where HC and SC are respectively the sets of the hard 

and soft constraints, and  is a Boolean variable repre-

sents the violation state of a given constraint: =1 for 

constraint violation and =0 for the constraint satisfac-

tion. After normalisation, it can be added with an associ-

ated weight to the fitness function as (f’6). The normali-

sation here is used to control the order of magnitude of 

different terms of the fitness function.  

 
The evaluation phase consists in calculating the force of 

each individual within the population (i.e. its adaptation 

to environmental constraints in the spirit of the compari-

son with a natural evolutionary process). Despite the 

genetic algorithms are usually implemented to maximize 

an objective function (Goldberg, 1989), our problem 

consists in minimizing an economic cost. Therefore, it is 

necessary to map the objective function so that its mini-

mum value will correspond to the strongest individuals. 

Thus, based on Goldberg’s work, it is possible to associ-

ate with the fitness function (f) of each individual (ind) a 

constant as large as possible Cmax to give a new function 

fab(ind) = Cmax– f(ind). We call it as the “individual abso-

lute force”. This method makes it possible to overcome 

the problems related to the sign of the function, if any. 

The value of Cmax can be estimated, as discussed in (At-

tia et al. 2012) relying on three cost terms: the project 

realisation minimum cost, the maximum cost value of 

the constraints that may be violated, and the penalty 

costs that may arise from the date of completion of the 

project. 

 

3.3 Selection of individuals 

The selection procedure is the determination of the op-

portunity given to some individuals from the current 

generation for the reproduction process of the next gen-

eration. The selection process is very sensitive to the 

values of the individuals’ fitness, especially the worst, 

average, and the best values in the population. These 

three values determine the selection tendency, and con-

trol the force of individuals that can be selected for the 

reproduction procedure. According to (Goldberg, 1989), 

if the average value is very close to the fittest one, then 

the search becomes as a random walk, because the aver-

age-fitting individuals have the same probability of be-

ing selected as the best individuals. The same problem is 

stated by (Davis, 1996): when the three values are very 

close, then the effect of the natural selection becomes 

negligible. But if the average value is much closer to the 

best fit compared to the worst one, then we encounter a 

strong selection pressure that favours the best chromo-

somes against the worst ones. For the creation of the 

next generation described in the following section, we 

will present how we can overcome this problem. In this 

article the selection is based on two selection method-

ologies. The first one is the elitist selection, with a pre-

specified elitist size equal to a probability of survival  

population size. The fittest individuals will be copied 

directly to the selected list of candidates for survival 

and/or passing through the mating pool. This selection 

approach can enhance the genetic algorithms perform-

ance and ensure no loss among the best solutions found. 

The second methodology is the stochastic sampling with 

replacement, or the “roulette wheel selection”, where the 

probability of one individual to be chosen is proportional 

to its fitness fab(ind).  

 

3.4 Construction of the next generation 

In this approach we avoid the use of reproduction with 

replacement technique for all individuals, because of its 

drawbacks, as explained by Davis (1996) many of the 

best individuals found may be not reproduced at all, and 

their genetic material could be lost for further explora-

tion trials. Or perhaps, crossovers and mutations may 

destroy the best found individuals’ structure. Neither of 

the two points is desirable. Thus, we use a reproduction 

approach similar to that used by (Edi, 2007; Mendes et 

al. 2009; Attia et al. 2012): the next generation is com-

posed of three groups, each one representing a given 

percentage of the full population. The first group is se-

lected from the previous generation applying an elitist 

selection, in which some of the best individuals are se-

lected from the current population to survive in the next 

one, seeking for the evolution of the best individuals 

from one generation to another. But this approach in-

creases the probabilities of convergence towards local 

optima, according to Edi (2007); one can reduce this 

problem via high mutation rates, which can be achieved 

by changing the genetic material of some chromosomes, 

and inserting some new individuals to the population. 

The second group is produced by the crossover process. 

The building of the third and last group is based on the 

individuals’ immigration principle, with the two follow-

ing methods: the first is the elitist immigration scheme, 

i.e. keeping the best individual from all the previous ex-

plorations, and presenting it as a new immigrant into the 

new population. The other is the random immigration 

scheme that has proved to be effective for the dynamic 

optimization problems (Yang, 2007), in which new vir-

gin individuals are produced randomly, exactly as the 

initial population, to enhance the artificial convergence, 

and maintain the population diversity. With such repro-

duction approach, none of the best solutions found can 

be lost during the process. The size of each group was 

predefined before the implementation of the genetic al-

gorithms procedure.  

 

Crossover: The selection of the parents for the reproduc-

tion process is performed randomly. The first parent will 

be selected amongst the best individuals that are already 

chosen by the elitist selection to ‘survive’, according to 

its fitness value; but the second parent will be selected 

from the entire population (avoid to select the same indi-

vidual to mate with himself). Then, the parameterized 
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uniform crossover of Mendes et al. (2009) takes it place, 

in which a random number between [0, 1] is generated 

for each gene in the chromosome. If this random number 

is lower than a fixed value, then the allele of the first 

parent (the best one) is used, otherwise the allele of the 

second parent (the worst one) is used. The resulting child 

is then directly copied into the new generation. 

 

Mutation: After the selection, crossover, and reproduc-

tion processes, the mutation process takes place in the 

evolution process. The mutation helps to prevent the 

search to converge towards some local optima, by chang-

ing some of the population genetic materials. The uni-

form mutation is used, in which the value of the chosen 

gene will be changed with a uniform random value as 

generated in the initial population. Increasing the number 

of mutated instances increases the algorithm’s ability to 

search outside the currently explored region of the search 

space - but if the mutation probability is set too high, the 

search may become a random search. 

 

3.5 Termination Procedure 

As in any iterative algorithm, the implementation of ge-

netic algorithms requires the definition of a criterion by 

which the exploration procedure decides whether to go 

on searching or to stop. The termination criterion is 

checked after each generation, to know if it is time to 

stop or to complete the exploration. In our approach, we 

define two termination criteria, and when any one of 

them is valid, the exploration will be stopped: 

  

- The first criterion is related to the average evolution of 

the objective function, as it was used by Attia et al. 

(2012). We call it ‘Average convergence’, in which the 

convergence is the evolution or, more exactly, the non-

evolution, of the average value of the fitness for a num-

ber “Nbi” of the best individuals for successive genera-

tions: when the average fitness value no longer seems to 

evolve during a given number g of generations, the proc-

ess is considered to have converged. 

  

- The second termination procedure simply depends on 

the number of generations that were produced and evalu-

ated. When this maximum number of generations has 

been run, then the termination procedure occurs: this just 

makes it possible to stop a search which does not seem 

to be successful, or to maximise the procedure running 

time.  

4 SCHEDULING ALGORITHM  

For each individual of the population, the scheduling 

procedures is conducted, to translate the individuals’ 

genetic materials into the corresponding tasks’ schedule 

and actors’ allocation. The following steps describe these 

decoding procedures, starting from the first day of the 

activity execution and based on the serial scheduling 

generation scheme. This builds a feasible schedule by 

sequentially adding the tasks one by one until a complete 

schedule is obtained. The scheduling algorithm mainly 

has two sub-procedures: search for sets of feasible tasks, 

and workforce allocation. At each time instance (or day), 

the feasible sets (fs) are generated, which represent the 

group of the tasks that may be scheduled together ac-

cording to the temporal relations between tasks, re-

sources availability or even the workforce regulations. 

 

4.1 Tasks feasible sets  

The construction of this feasible set of tasks (fs) is con-

ducted in two steps. First, at each time instance of the 

project partial schedule, we look for the task(s) that can 

be performed without any violation of the temporal rela-

tions. After this search of all the tasks that can be con-

sidered as feasible (considering only the temporal con-

straints), they are grouped into a set of “the candidates 

list”. With the aid of tasks priorities, which are hold by 

the corresponding chromosomes, we can select the most 

prioritized task. After that, other procedures of checking 

feasibility based on resources availabilities, and regula-

tion constraints should be conducted. If ever the unfeasi-

bility was proven (because the need for resources ex-

ceeds their availabilities for example), the task with the 

next maximum priority in the list is selected. We follow 

this procedure until we can find the suitable task, then 

we call the resources allocation procedures (as explained 

in section 4.2). All tasks within the candidates list will be 

checked, until we can find a feasible set of tasks, consid-

ering precedence relations, resources’ availabilities and 

working time regulations, all together. Thus, first we are 

looking for a feasible set fs, so that: 

 

- For any pair of tasks (i, c) in the feasible set (fs), 

there is no restriction for performing them simulta-

neously at the current time instance, considering the 

precedence constraints.  

- The workload requirements by the tasks within the 

set (fs) must be satisfied, qualitatively as well as 

quantitatively. 

- The total resources requirement by the feasible set 

must be lower than or equal to the resources avail-

abilities. 

- Each actor always works without any violation of 

the working time regulations.  

 

4.2 Resources allocation 

Having checked the resources availabilities, and written 

the skills’ criticality list, we are now ready to conduct 

actors’ allocation. By the end of actors’ allocation algo-

rithms, we should be able to assign a value to each vari-

able (ωa,i,k,j, EEi,k , di,k), according to the relation 

kiki
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jkia
EEd ,,

,
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 . Therefore, we can construct all the 

possibilities of every task’s workload durations di,k and 

the resulting actors’ daily number of working hours 

(ωa,i,k,j). Regarding the decision of the actors’ daily 

working hours strategies that are hold by the chromo-

some, we can start a search for the actors’ values of daily 
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working hours (ωa,i,k,j) which would satisfy the task time 

window and the working time regulation constraints. By 

the following procedure described by figure 1, we pre-

sent the workforce allocation algorithm. These proce-

dures for the scheduling generation scheme will be con-

tinued until all the tasks’ workloads are scheduled – 

unless we state the failure of the corresponding chromo-

some to give rise to an acceptable schedule. In this case, 

the chromosome will be penalized, by giving it a large 

cost penalty, in order to reduce its probability to be re-

produced in the next generation. 

 
- Sort the available actors according to their priorities  

- Update the productivity levels a,k(n  ddi,k) of the available actors,  

- Sort workloads within the tasks according to skills’ criticality list.   

While (all workloads of the current task have their team-works), do   

While (all available actors are checked), do   

Allocate (most prioritised actor with (θa,k ≥ θmin,k)), EEi,k=EEi,k + θa,k 

Construct a matrix of ωa,i,k,j ,  di,k {Di
min, Di

max},  

For (working interval = most prioritised working interval] 

Search within the matrix for a value of ωa,i,k,j[working interval] 

If it exists check working time constraints 

If (working time constraints are feasible)  

Store this allocation and mark actors as unavailable during the 

period corresponding to di,k.. Fix the value of di,k., update all 

variable that depends to this allocation.  

Break to next workload  

Next for  

End while  
 If (there are no available actors) break while with conclusion of: the 

unavailability proven to realise the current task.    

End while  

Figure 1: Workforce allocation algorithm 

5 APPROACH VALIDATION  

In order to validate the ability of the proposed approach 

to return a feasible solution, we randomly selected (and 

modified) 20 projects from an open-access library 

(PSPLib, 1996). The instances are taken with different 

numbers of tasks (30, 60, 90, and 120), each instance 

having its appropriate number of actors and tasks tempo-

ral relations. The validation procedures are simply based 

on functional tests, i.e. we review the algorithm response 

with what we expect from the data. Thus any contradic-

tion between the data entry and results will be concluded 

as a failure of the functional test. In this way, we treated 

the algorithm as a black box, as shown by figure 2: four 

sets of inputs, such as tasks temporal relations, tasks 

durations (Dmin, D, Dmax), tasks workload requirement 

per skill, and the productivities, for each actor for each 

of his/her skills. The simulation parameters of the ge-

netic algorithm are kept unchanged during the explora-

tion (as shown in table 1), because at this step we are 

interested in validating the capability of the algorithm to 

deliver a feasible and applicable schedule, not to study 

its performance. Studying the performance of the algo-

rithm and tuning its parameters will be discussed in the 

following sections. The parameters to be checked have 

been classified into two groups according to the outputs 

of the algorithm; 

The project:  

 Tasks’ start and finish dates, tasks’ durations, 

 The tasks relations will be checked from their start and 

finish dates, 

 The project workload per task and per skill should be 

fulfilled with the required manpower, both quantita-

tively and qualitatively.  

Human Resources:  

 Each actor should be assigned only once per each pe-

riod of his working timetable,  

 The assigned actors should master the required skills 

with productivities higher than or equal to the mini-

mum prefixed qualifications, 

 The evolution of the actors’ experience (known from 

their prior allocations) should be checked, 

 Each actor’s time table must satisfy the legal conditions 

of working hours, especially the hard constraints. 

 

  
Figure 2: treating the algorithm during the validation 

 

We proved that the proposed model is capable to return a 

feasible and applicable project schedule with the corre-

sponding workforce allocation. Here, the checking has 

been carried out manually; all the hard constraints have 

been checked and proved to be satisfied, in addition to 

the soft constraints, thanks to workforce proposed flexi-

bility. 

 

Max. generations  = 400 generations 

Population size (PI)  = 50 individuals  

Crossover probability = 0.7 

Mutation probability = 0.01 

Regeneration Probability = 0.2 

Max. gen. without evolution  = 100 generations 

Size of “Nbi”   = 10 individuals 

Losing flexibility cost  = 20 MU 

Tolerance period (β)  = 20 % ×L 

Table 1: GA’s parameters used during validation  

6 PARAMETERS TUNING 

We then tested the performance and the robustness of the 

algorithm. As discussed by Eiben and Smit (2011), an 

algorithm performance measurement usually checks the 

quality of the solutions, and the rapidity to return back 

these solutions. The solution quality can be measured 

from the individuals’ fitness. But the robustness consists 

in checking the algorithm stability under the presence of 

uncertainty conditions within the data input, e.g. chang-

ing randomly the problem instance – the parameter vec-

tor(s). However, one of the essential steps of any algo-

rithm is the parameters tuning that mainly depends on 

the performance analysis. Then, and relying on “no free 

lunch theorem” of Wolpert and Macready (1997), one 

can use these parameters combination in solving other 
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instances. Thus, here we designed an experiment to tune 

the algorithm parameters in order to achieve the best 

performance, in addition to study its robustness towards 

changes of problem’s instances.  

 

To tune the algorithm parameters, one should investigate 

all the possible interactions between parameters combi-

nations, in order to adjust them and optimize the algo-

rithm performance; but investigating all parameters by 

factorial design is almost impossible due to the cost re-

lated to running time, “time = levelsfactors numbers ”. To 

avoid this drawback we adopted the fractional factorial, 

by using one of surfaces response, such as “Taguchi 

method”, “Central composite”, or ‘Box–Behnken de-

signs’. First we need to determine the parameters and the 

associated ranges. Therefore, we conducted a survey for 

the values used within literature as illustrated by table 2. 

  

Population size (PI)  [20 to 200]  

Crossover probability [0.50 to 0.90] 

Mutation probability [0.01 to 0.2] 

Regeneration Probability [0.0 to 0.2] 

Max. non developed generations [50 to 200] 

Tolerance period (β)  [0.0 to 60]% ×L 

Table 2: Parameters ranges  

 

According to the work of Ferreira et al. (2007) we 

adopted the three levels design “Box–Behnken designs”, 

and used the stochastic software “MiniTab-16” to gener-

ate the vectors of parameters combinations. As results, 

we get 54 vectors to be tested. We selected randomly a 

project instance of 30 tasks to be used during this inves-

tigation. In order to avoid the stochastic nature of genetic 

algorithm, we decided to run each simulation at least 10 

times, and to take the average of their results. The result 

analysis indicates the best combination of the parame-

ters. According to “Pearson's correlation coefficient test” 

we found that the running time is linearly related to the 

population size, and number of non-convergence genera-

tions (stopping criterion). Regarding the objective func-

tion, we found that increasing the mutation rate increases 

the returned project cost, and that increasing the project 

tolerance period (β) linearly reduces its cost. As a sample 

of the graphic representation, we display the effect of 

some investigated parameters on figure 3 and 4. 

 
Figure 3: The effect of PI and β on returned objective 

 

Figure 4: The effect of SC and Pm on returned objective 

 

As a result, we found the best combination of 

parameters, showed it in table 3. With these 

parameters, we proved the robustness of the proposed 

approach when solving the different instances, with 

different (tasks, actors, skills) combinations: (10, 30, 60, 

90, 120) tasks, (10 : 193) actors, and 4 skills.  

 

Population size (PI)  [50, 100]  according to 

the problem size 

Crossover probability = 0.7 

Mutation probability (Pm) = 0.01 

Regeneration Probability = 0.1 

Maximum number of non-

evolved generations (SC)   

= 100 generations 

Tolerance period (β)  = 20 % ×L 

Table 3: Parameters corresponding values to be used 

7 CONCLUSION 

In this article, we presented a genetic algorithm-based 

approach to solve our problem of project schedule with 

workforce multi-periods allocations. The model takes 

into account human resources flexible timetables, in ad-

dition to their dynamic versatility. The dynamic vision of 

workforce productivities is relying on the development 

thanks to learning-by-doing, and reciprocally, the depre-

ciation of their competences resulting from the lack of 

practice in periods of work interruption. The produced 

model is nonlinear, with a huge number of mixed vari-

ables. The proposed genetic algorithm relies mainly on 

answering three questions based on the priority encod-

ing: what task will be processed first? Then which ac-

tor(s) will be allocated to realise this task? What is the 

working time strategy that the actors will respect, during 

the activity realization? The model has been validated, 

moreover, its parameters has been tuned to give the best 

performance. In addition, the model proved to be robust 

towards changing instances to be solved. As future 

works: this model will be used to conduct an investiga-

tion study to test the parameters affecting the develop-

ment of the actor’s skills. Moreover, we are looking to 

upgrade this model with multi-criteria decision analysis.  
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